
Introduction
• Simulation of physical systems (e.g., fluid dynamics and 

weather forecasting) relies on solving PDEs

• Machine learning is increasingly used for solving PDEs
Neural Surrogate

Initial Value Predictions
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Motivation
• Neural surrogates lack desirable properties:

x Spatial- and temporal super-resolution
x Generalization to PDE parameter values
x Efficiency and accuracy

• Vectorized Conditional Neural Field (VCNeF):
üLearns solution as a function u(t, x)
üIncorporates PDE parameter values
üParallel generation of queried solutions

• VCNeF is based on Linear Transformers and Neural Fields

Background Knowledge
• Neural Field (e.g., PINN):

• Conditional Neural Field:

𝑓!: ℝ"×ℝ# → ℝ$
𝑡, 𝒙 ↦ 𝑢(𝑡, 𝒙)

𝑓!: ℝ"×ℝ#×ℝ% → ℝ$
𝑡, 𝒙; 𝑍 ↦ 𝑢(𝑡, 𝒙; 𝑍)
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Method

• Takes a vector of spatial coordinates
• Exploits spatial dependencies between 

coordinates with attention
• Generates all outputs in one forward pass
• Conditioned on initial value and PDE 

parameter

Properties:
• Spatial and temporal super-resolution
• Accelerated training and inference
• Allows including physics-aware loss
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Let’s use the VCNeF model
to solve my equations

Code: https://github.com/jhagnberger/vcnef

Experiments
• Focus on initial value problems for 1D Burgers’, 1D Advection, and 

Compressible Navier-Stokes (CNS) equations from PDEBench
• Baselines: Fourier Neural Operator (FNO), MP-PDE, CORAL, OFormer, 

and Galerkin Transformer

Proposed VCNeF:
• Performs competitively with the baselines and often outperforms them
• Has spatial and temporal zero-shot super-resolution capabilities
• Generalizes to unseen PDE parameter values
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PDE Model nRMSE (#) bRMSE (#)

Burgers

FNO 0.0987 0.0225
MP-PDE 0.3046 (+208.7%) 0.0725 (+221.7%)
CORAL 0.2221 (+125.1%) 0.0515 (+128.2%)
OFormer 0.1035 (+4.9%) 0.0215 (-4.5%)
Galerkin 0.1651 (+67.3%) 0.0366 (+62.3%)
VCNeF 0.0824 (-16.5%) 0.0228 (+1.3%)

Advection

FNO 0.0190 0.0239
MP-PDE 0.0195 (+2.7%) 0.0283 (+18.4%)
CORAL 0.0198 (+4.3%) 0.0127 (-46.8%)
OFormer 0.0118 (-38.0%) 0.0073 (-69.6%)
Galerkin 0.0621 (+227.1%) 0.0349 (+46.2%)
VCNeF 0.0165 (-13.0%) 0.0088 (-63.2%)

1D CNS

FNO 0.5722 1.9797
CORAL 0.5993 (+4.7%) 1.5908 (-19.6%)
OFormer 0.4415 (-22.9%) 2.0478 (+3.4%)
Galerkin 0.7019 (+22.7%) 3.0143 (+52.3%)
VCNeF 0.2943 (-48.6%) 1.3496 (-31.8%)

2D CNS
FNO 0.5625 0.2332
Galerkin 0.6702 (+19.2%) 0.8219 (+252.4%)
VCNeF 0.1994 (-64.6%) 0.0904 (-61.2%)

3D CNS FNO 0.8138 6.0407
VCNeF 0.7086 (-12.9%) 4.8922 (-19.0%)

Table 1: Errors of surrogate models trained and tested on the same spatial and temporal resolution
with a fixed PDE parameter. nRMSE and bRMSE denote the normalized and RMSE at the bound-
aries, respectively. Values in parentheses indicate the percentage deviation to the FNO as a strong
baseline in terms of accuracy, memory consumption, and runtime. Underlined values indicate the
second-best errors.

Figure 2: Error distribution of VCNeF vs. baselines. Boldfaced are unseen PDE parameter values.

RQ2. To evaluate the performance and effectiveness of VCNeF and its PDE parameter condi-
tioning, we train VCNeF, a PDE parameter conditioned FNO (cFNO; Takamoto et al. (2023)), and
OFormer that has been modified to accept PDE parameter1, on a set of PDE parameter values and
test them on an unseen set of parameter values. Figure 2 shows the error distribution for 1D CNS. We
observe that VCNeF generalizes better to unseen PDE parameters than the other baseline models.

RQ3. We evaluate the ability of VCNeF to do spatial and temporal ZSSR which means that the
model is trained on a reduced spatial and temporal resolution and then used for high-resolution
inference. The results in Table 16 show that OFormer and our proposed VCNeF have spatial ZSSR
capabilities since there is no significant increase in error even when the spatial resolution is 4x the

1We encode the parameter values as an additional channel.
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Comparison to SOTA Baselines for Fixed 
PDE Parameter Value and Resolutions
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Figure 6: Error distribution of samples in the test set of 1D Advection. Boldfaced are the unseen
PDE parameter values. Values for cOFormer and � = 7.0 are missing since the model produced
NaN at inference time.

F.3 (RQ3): TEMPORAL AND SPATIAL ZSSR

Here we discuss the spatial and temporal zero-shot super-resolution capabilities of VCNeF and
compare it with FNO and OFormer for spatial ZSSR. As for the temporal ZSSR, we chose CORAL
since it’s a continuous-time model and FNO+Interpolation because FNO does not support temporal
ZSSR. Table 16 shows the errors for the spatial ZSSR experiment and Table 17 for the temporal
ZSSR experiment.

PDE Spatial res. Model nRMSE (#) bRMSE (#)

1D CNS

FNO 0.5722 1.9797
OFormer 0.4415 2.0478256
VCNeF 0.2943 1.3496

512
FNO 0.6610 2.7683
OFormer 0.4657 2.5618
VCNeF 0.2943 1.3502

1024
FNO 0.7320 3.5258
OFormer 0.4655 2.5526
VCNeF 0.2943 1.3510

3D CNS

FNO 0.8138 6.0407
32⇥ 32⇥ 32 VCNeF 0.7086 4.8922

64⇥ 64⇥ 64
FNO 0.9452 8.7068
VCNeF 0.7228 5.1495

128⇥ 128⇥ 128
FNO 1.0077 9.8633
VCNeF 0.7270 5.3208

Table 16: Errors of spatial ZSSR experiment. The models are trained on the spatial resolutions
indicated in grey and tested on higher spatial resolutions. The temporal resolution is Nt = 41 for
1D, Nt = 21 for 2D, and Nt = 11 for 3D (same as during training). Underlined values indicate the
second-best errors.
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PDE Temporal res. Model nRMSE (#) bRMSE (#)

1D CNS

FNO 0.5722 1.9797
CORAL 0.5993 1.590841
VCNeF 0.2943 1.3496

82
FNO + Interp. 0.5667 1.9639
CORAL 1.1524 3.7960
VCNeF 0.2965 1.3741

3D CNS

FNO 0.8138 6.040711 VCNeF 0.7086 4.8922

21 FNO + Interp. 0.8099 6.1938
VCNeF 0.7106 5.1446

Table 17: Errors for temporal ZSSR. The models are trained on the temporal resolutions indicated
in grey and tested on higher temporal resolutions. The spatial resolution is s = 256 for 1D and
s = 64 ⇥ 64 ⇥ 64 for 3D (same as during training). “FNO + Interp.” means FNO with linear
interpolation between the timesteps since it doesn’t naturally support temporal ZSSR. Underlined
values indicate the second-best errors.

F.4 (RQ4): INFERENCE TIMES

In traditional numerical solvers, the simulation time of trajectories of a given PDE is influenced by
several factors such as the value of PDE parameter, efficiency of software implementation, the type
and order of numerical algorithm, discretization mesh, etc. On the contrary, inference (simulation)
time of ML models is agnostic to these factors, which is one of the huge advantages of machine-
learned PDE surrogates.

To compare and understand the time taken for longer rollouts, we visualize the inference times
of VCNeF, FNO, Galkerin Transformer, and OFormer models. Figure 7 shows the scaling be-
haviour of the inference times for variable number of timesteps in the future {80, 120, 160, 200,
and 240}. Table 18 also includes the memory consumption in addition to the inference times. The
results demonstrate that the inference times of the proposed model scale better than compared to
other transformer-based baselines and are competitive with FNO. However, the speed-up results in
a higher memory consumption. The model can also be used to do inference in a sequential fash-
ion which reduces the memory consumption but increases the inference time. Nevertheless, it is
still faster than OFormer while the memory requirement remains the same even for extended rollout
durations.
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Spatial and Temporal Zero-Shot Super-Resolution
Trained on lower resolution and tested on higher resolutions

Generalization to Unseen PDE Parameter Values
Trained on set of PDE parameter values and tested on unseen values (boldfaced)

Qualitative Result

Vectorized Conditional Neural Fields: A Framework for Solving Time-dependent Parametric PDEs
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Partial Differential Equations

• Burgers’ equation models diffusive waves 
in fluid dynamics over time

t: Temporal coordinate
x: Spatial coordinate

• Solving PDEs: Finding function u(t, x) that 
satisfies the equation and constraints 
(initial and boundary condition)

𝜕&𝑢 𝑡, 𝒙 + 𝑢 𝑡, 𝒙 𝜕'𝑢 𝑡, 𝒙 =
𝜈
𝜋 𝜕''𝑢(𝑡, 𝒙)

Conditional Neural Field vs VCNeFVectorized Conditional Neural Field

Project page: https://jhagnberger.github.io/vectorized-conditional-neural-field


