e l l s u l l s u u u u u u u u u u u u u u u u u u u

- weather forecasting) relies on solving PDEs

Vectorized Conditional Neural Field

- Takes a vector of spatial coordinates
- Exploits **spatial dependencies** between coordinates with attention
- Generates all outputs in one forward pass Conditioned on initial value and PDE

parameter

Properties:

- Spatial and temporal super-resolution
- Accelerated training and inference
- Allows including **physics-aware loss**

Focus on initial value problems for 1D Burgers', 1D Advectio Compressible Navier-Stokes (CNS) equations from PDEBer

• Baselines: Fourier Neural Operator (FNO), MP-PDE, CORAL, and Galerkin Transformer

Proposed VCNeF:

- Performs competitively with the baselines and often outperformed
- Has spatial and temporal zero-shot super-resolution capabili
- Generalizes to unseen PDE parameter values

Published at the 41st International Conference on Machine Learning

Vectorized Conditional Neural Fields: A Framework for Solving Time-dependent Parametric PDEs

Jan Hagnberger, Marimuthu Kalimuthu, Daniel Musekamp, Mathias Niepert j.hagnberger@gmail.com, {firstname.lastname}@ki.uni-stuttgart.de

Experiments

o n , and nch OFormer,	Compari PDE Par	son to ramete	SOTA Baseli r Value and	nes for Fixed Resolutions	Spatia Trained	l and T on lowe	emporal er resolutio	Zero-S on and te	hot Su sted on l	per-Res nigher res
	PDE	Model	nRMSE (↓)	bRMSE (↓)		PDE	Spatial res.	Model	nRMSE (\downarrow)	bRMSE (↓)
		FNO MP-PDE	$\frac{0.0987}{0.3046} (+208.7\%)$	$\frac{0.0225}{0.0725} (+221.7\%)$			256	FNO OFormer VCNeF	0.5722 <u>0.4415</u> 0.2943	<u>1.9797</u> 2.0478 1.3496
t ₂₀ t ₂₀	Burgers	OFormer Galerkin	0.2221 (+125.1%) 0.1035 (+4.9%) 0.1651 (+67.3%)	0.0515 (+128.2%) 0.0215 (-4.5%) 0.0366 (+62.3%)		1D CNS	512	FNO OFormer VCNeF	0.6610 <u>0.4657</u> 0.2943	2.7683 2.5618 1.3502
	Advection	FNO MP-PDE	0.0824 (-16.5%) 0.0190 0.0195 (+2.7%)	$\begin{array}{r} 0.0228 (+1.3\%) \\ \hline 0.0239 \\ 0.0283 (+18.4\%) \\ 0.0127 (-46.8\%) \\ 0.0073 (-69.6\%) \end{array}$)		1024	FNO OFormer VCNeF	0.7320 <u>0.4655</u> 0.2943	3.5258 <u>2.5526</u> 1.3510
		CORAL	0.0198 (+4.3%) 0 0118 (-38 0%)			3D CNS	$32 \times 32 \times 32$	FNO VCNeF	0.8138 0.7086	6.0407 4.8922
		Galerkin VCNeF	$\begin{array}{c} 0.0621 \ (+227.1\%) \\ \underline{0.0165} \ (-13.0\%) \end{array}$	$\begin{array}{c} 0.0073 (-0).070 \\ 0.0349 (+46.2\%) \\ \underline{0.0088} (-63.2\%) \end{array}$			$64 \times 64 \times 64$	FNO VCNeF	0.9452 0.7228	8.7068 5.1495
	1D CNS	FNO CORAL	0.5722 0.5993 (+4.7%)	1.9797 1.5908 (-19.6%)			$128 \times 128 \times 12$	8 FNO VCNeF	1.0077 0.7270	9.8633 5.3208
		OFormer Galerkin	$\frac{0.4415}{0.7019} (-22.9\%)$	$\overline{2.0478} (+3.4\%)$ 3.0143 (+52.3%) 1.3496 (-31.8%) $\overline{0.2332}$ 0.8219 (+252.4%)		PDE	Temporal res.	Model	nRMSE (↓)	bRMSE (↓)
	2D CNS	FNO Galerkin	$\frac{0.2943}{0.5625} (+19.2\%)$			1D CNS	41	FNO CORAL VCNeF	0.5722 0.5993 0.2943	<u>1.9797</u> 1.5908 1.3496
		VCNeF	0.1994 (-64.6%)	0.0904 (-61.2%)			82	FNO + Interp. CORAL	<u>0.5667</u> 1.1524	<u>1.9639</u> 3.7960
	3D CNS	FNO VCNeF	0.8138 0.7086 (-12.9%)	6.0407 4.8922 (-19.0%)			11	VCNeF FNO	0.2965 0.8138	1.3741 6.0407
						3D CNS	21	VCNeF FNO + Interp.	0.7086 0.8099	4.8922 6.1938

olution olutions

VCNeF

0.7106

5.1446

University of Stuttgart Germany